Math 210A Lecture 4 Notes

Daniel Raban

October 5, 2018

1 Limits and colimits

1.1 Limits

Definition 1.1. Let I be a small index category, and let $F : I \to C$ be a functor. A **limit** lim F is an object X with morphisms $f_i : X \to F(i)$, characterized by the following properties:

- 1. If $g_{i,j}: F(i) \to F(j)$ is a morphism, then $f_j = F(g_{i,j}) \circ f_i$.
- 2. Any Y with this property factors through X; i.e. there exists an unique $\varphi : Y \to X$ such that $f'_i = f_i \circ \varphi$ for all *i*.

The second property is called a **universal property**.

Remark 1.1. The limit includes the data of the f_{α} maps.

Proposition 1.1. If it exists, $\lim F$ is unique up to isomorphism. Moreover, this isomorphism is unique,

Proof. Suppose $(X, \{f_{\alpha}\})$ and $(Y, \{f'_{\alpha}\})$ are both limits of F. Since both of them are limits, let $\phi: X \to Y$ and $\psi: Y \to X$ be the unique maps given by the universal property. \Box

Definition 1.2. Let *I* be a discrete category (only identity morphisms). Then $F: I \to C$ is determined by a collection $(X_i)_{i \in I}$ of objects. Then the **product** is $\prod_{i \in I} X_i = \lim F$.

For the morphisms, we have

$$\operatorname{Hom}_{\mathcal{C}}(Z, \prod X_i) \simeq \prod \operatorname{Hom}_{\mathcal{C}}(Z, X_i)$$

Example 1.1. In the category of sets, the product is the set-theoretic product.

Example 1.2. In Ab, Grp, and Mod, the product is the usual product, as well.

Example 1.3. In C = Fld, the product is not the usual product. $\mathbb{Q} \times \mathbb{Q}$ is not a field. You can also check that the product of $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2})$ does not exist.

Definition 1.3. The *pull-back* $X = A \times_C B$ is a limit of A and B with morphisms $f: A \to C$ and $g: B \to C$.

Remark 1.2. Even though we write the pull-back as $X = A \times_C B$, it depends on the morphisms f, g.

Example 1.4. In Set, the pullback is $A \times_C B = \{(a, b) \in A \times B : f(a) = g(b)\}.$

1.2 Colimits

Definition 1.4. Let I be a small index category, and let $F : I \to C$ be a functor. A **colimit** colim F is an object X with morphisms $f_i : F(i) \to X$, characterized by the following properties:

- 1. If $g_{i,j}: F(i) \to F(j)$ is a morphism, then $f_i = f_j \circ F(g_{i,j})$.
- 2. Any Y with this property factors through X; i.e. there exists an unique $\varphi: Y \to X$ such that $f'_i = \varphi \circ f_i$ for all i.

Definition 1.5. Let *I* be a discrete category (only identity morphisms). Then $F : I \to C$ is determined by $(A_i)_{i \in I}$. Then the **coproduct** is $\coprod_{i \in I} X_i = \operatorname{colim} F$.

Example 1.5. In the category of sets, the coproduct is the disjoint union.

Example 1.6. In the category of groups, $G_1 \amalg G_2$ is call the **free product** of G_1, G_2 . This is usually denoted by $G_1 * G_2$.

Example 1.7. In the category of *R*-modules,

$$\prod_{i \in I} M_i = \bigoplus_{i \in I} M_i = \left\{ \sum_{i=1}^n r_i m_i : r_i \in R, m_i \in M_i \right\}.$$

If I is infinite, this is not the same as

$$\prod_{i\in I} M_i = \{(r_i m_i)_{i\in I} : r_i \in R, m_i \in M_i\}.$$

Example 1.8. In the category of commutative rings, $R \amalg A = R \otimes_{\mathbb{Z}} S$.

Definition 1.6. The push-out $X = A \amalg_C B$ is a colimit of A and B with morphisms $f: C \to A$ and $g: C \to B$.

Example 1.9. In Set, $Y \amalg_C Z = \{x \in Y \amalg Z : f(x) = g(x)\}.$

Example 1.10. In the category of groups, $G_1 \amalg_H G_2$ is called the amalgamated free product and is denoted by $G_1 *_H G_2$.

Example 1.11. In the category of commutative rings, $S_1 \amalg_R S_2 = S_1 \otimes_R S_2$.

Definition 1.7. If $\lim F$ exists, we cay C admits the limit of F. If C admits all (small) limits, we cay C is complete. If C admits all (small) colimits, C is cocomplete.

Example 1.12. The category of sets is both complete and cocomplete.