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1 Limits and colimits

1.1 Limits

Definition 1.1. Let I be a small index category, and let F' : I — C be a functor. A
limit lim F' is an object X with morphisms f; : X — F(¢), characterized by the following
properties:

1. If g; j : F(i) = F(j) is a morphism, then f; = F(g; ;) o fi.

2. Any Y with this property factors through X; i.e. there exists an unique ¢ : ¥ — X
such that f/ = f; o ¢ for all 7.
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The second property is called a universal property.
Remark 1.1. The limit includes the data of the f, maps.

Proposition 1.1. If it exists, lim F' is unique up to isomorphism. Moreover, this isomor-
phism is unique,

Proof. Suppose (X, {fa}) and (Y, {f.}) are both limits of F'. Since both of them are limits,
let : X - Y and ¥ : Y — X be the unique maps given by the universal property. O
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Definition 1.2. Let I be a discrete category (only identity morphisms). Then F': [ — C

is determined by a collection (X;);cr of objects. Then the product is [[;.; X; = lim F.
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For the morphisms, we have
Home(Z, HXi) ~ HHomc(Z, X;).
Example 1.1. In the category of sets, the product is the set-theoretic product.

Example 1.2. In Ab, Grp, and Mod, the product is the usual product, as well.

Example 1.3. In C = Fld, the product is not the usual product. Q x Q is not a field. You
can also check that the product of Q(v/2) and Q(v/2) does not exist.

Definition 1.3. The pull-back X = A x¢ B is a limit of A and B with morphisms

f:A—>Candg: B—C.

Remark 1.2. Even though we write the pull-back as X = A x¢ B, it depends on the
morphisms f, g.

Example 1.4. In Set, the pullback is A x¢ B ={(a,b) € Ax B: f(a) = g(b)}.

1.2 Colimits

Definition 1.4. Let I be a small index category, and let F' : I — C be a functor. A
colimit colim F' is an object X with morphisms f; : F(i) — X, characterized by the
following properties:



1. If g;j : F(i) = F(j) is a morphism, then f; = fj o F(g; ;).

2. Any Y with this property factors through X; i.e. there exists an unique ¢ : Y — X
such that f/ = o f; for all 7.
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Definition 1.5. Let I be a discrete category (only identity morphisms). Then F' : [ — C
is determined by (A4;);c;. Then the coproduct is IT;c; X; = colim F.
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Example 1.5. In the category of sets, the coproduct is the disjoint union.

Example 1.6. In the category of groups, G II G9 is call the free product of G1,Gs.
This is usually denoted by G * Ga.

Example 1.7. In the category of R-modules,
n
HMZ = @MZ = {Zrlm, ' € Rom; € MZ} .
il iel i=1

If 1 is infinite, this is not the same as

[T = {(rimi)ics : 7 € Rymi € My}
icl

Example 1.8. In the category of commutative rings, RII A = R®z S.



Definition 1.6. The push-out X = Allg B is a colimit of A and B with morphisms

f:C—>Aandg:C — B.
X
Example 1.9. In Set, YIc Z ={z €YU Z: f(z) = g(x)}.

Example 1.10. In the category of groups, G; Il Go is called the amalgamated free
product and is denoted by Gy xg Gos.

Example 1.11. In the category of commutative rings, S1 IIg So = S1 ®g Ss.

Definition 1.7. If lim F' exists, we cay C admits the limit of F. If C admits all (small)
limits, we cay C is complete. If C admits all (small) colimits, C is cocomplete.

Example 1.12. The category of sets is both complete and cocomplete.
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